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ADSTRACT

For a cylindrically symmetric pasma colu.mn whose electron

density N is a slowly varying, monotonically decreasing function of radius

r, it is possible to calcv.!ate explicitly both the diffraction pattern from the

knowledge of Ntr) and, conversely, N(r) from the kno%',ledge of the diffrac-

tion pattern. If the diffraction pattern is obtained experimentally, N(r) can

be calculated by a cumbersome numerical procedure. Instead of doing this,

the ditfraction pattern can be appr,'xiimated by one of a family of convenient

arlytical express:oni for which the integration can be carried out easily.

A.ternat:velv, one can attempt to izfer N(r) by assuming a functional form

for N(r) with one or more parameters, calculate the diffraction pattern and

co'npare it with the ob.erved on,.



PZ3MRI -8Z3-60

TABLE OF CONTENTS

Page

1. Introduction 1

2. Differential Scattering Cross-section and Impact Parameter 3

3. Ray Path and Deflection Angle 5

4. The Inverse Problem 9

5. Special Cases of 0 vs. b Variation 11



PIBMRi-82ý-o0

1. Introduction

It is possible to determine the electron densily distribution in a

lossless plasma cylinder by illuminating it with a plane electromagnetic

wave and observing the diffraction pattern. Let us assume that the plasma

cylinder is long compared to wavelength and that the plasma density dei ends

on the distance from the axis alone. This plasma cylinder is illuminated by

a weak plane electromagnetic wave incident at right angler to the axis,

polarized so that its electric vector is parallel to the axis. The electric

field has a single axial component E. which satisfies the wave equation

[.Z 2
E7+ k (r)]E = 0 (1)

where

kZ(r) 2 0 0( (2)

> 2,
k" - N(r) L e /m

0 0

and

- angular frequency of the wave

"o0 to - magnetic permeability and dielectric
constant of free space

e,m - elcctronic charge, mass

N(r) - electron density (no. of electrons/mn3

k - , free space wavenumber
0 Vo to

Far away from the plasma cylinder the field consists of the incident plane

wave and an outgoing cylindrical wave. From the dependence of th, power

density in the cylindrical wave on the angular direction or on the frequency

it is possible to deduce the radial distributiun N(r). This inverse scattering
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problem has received considerable attention in quantum mechanics. The

wave equation then is

[I7 +k (r)] 0 03

where

2Lr 2m E 2m V
2 2m 2rk rj=-i _- -- V~r)

The energy E here plays the same role as the frequency does in the case

of plasma, and the potential energy V(r) corresponds to the electron density

distribution. In quantum rnechanics one normally tries to construct the

potential funct:on V(r) from known scattering data (either total scattering

cross-section, or differential scattering cross-section in a fixed direction)

as a function of energy. This is basically the same procedure as is used,

for example, in ionospheric sounding, where frequency is varied. The

method dealt with here utili.es scattering data in all directioas at a single

energy (frequency).

Whatever type of data is used, the exact inversion problem is an

extremely diffirult one to solvel. For this reason we may resort to an ap-

proximation. If the *,ariation of properties of the medium is slow, i.e., the

relative change per wavelength is small, then we can resort to a WKB or

geometric-optical approximation. We shall assume that the geometric-

optical approximation is valid, calculate the differential scattering cross-

section from the electron density distribution on that basis, and then invert

that relationship so as to obtain the electron density distribution from the

differential scattering cross-section.

1. 1. M. Gelfand and B. M. Levitan. fsv. Akad, Nank SSSR. Mat. See. 15, 309
(1951)

Doklady Akad, Nan.i SSR, 77, 557(1951)
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2. Differentnaa Scattering Crosf -jection and Impact Pararmeter

Consider a plane wave incident perpendicularly on a plasma coiu-nn;

the rays are initially parallel straaght lines (See Fig. 'a). When thesc rays

enter the ionized region, they are deflected. The irn,';ct parameter b for a

given ray is defined as the distance between the central ray (ray in the plane

of symmetry of the plasma column) and the given ray. 1f .he incident wave

carries unit power per unit width (this is a , .o-dimensional geometry). then

the power contained between rays with impact parameter b and b + db is

db. 11 these rays emerge from the plasma at angles 8 and 0 + dO, then,

on the basis of geometric -opt-cal cons~deration,

qdO db (4)

where or is the scattered power per unit angle, or the d-_`ferential scattering

cross-section. We see that a(0) and 0(b) are simplf related as follows:

db
a (0) dO (f)

The first step in the inversion process is to calculate 8(b), given r(@).

Even if, as we shall assume, the bonization density N is a monotonic de-

creasing function of r, there may be a difficulty in this step. We have to

distinguish between soft, or penetrable, obstacles, and hard, or impenetrable

ones. If the plasma column is impenetrable then the zentral ray is deflected

through 1800. while d.strant rays are not deflected 'see Fig. lb). In that

case, b(O) is a single-valued function, and there, is no difficulty in inte-

grating #(9) to obtain b(O), and thwn to invert that relation to obtain O(b).

If, on the other hand, the plasma column i* penetrable (Fig. Ic). the central

ray is not deflected, and other rays are deflected through various angles

ranging from zero to a certain naximum value 9 (maximum diffraction0
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angle). Hence there are two ray. deflectec in any given direction 0, and

b(O) :s double-valued.

In the latter case the differential scattering cross-sectioA wi.l

oscillate rapidly as a function of 0 as a result of interference oetween

the two rays deflected in the same direction. At the peaks the two intensities

'.dd, at the minima they subtract. Lf we plct intensity (square root of dif-

ferential cross-section) vs. 0, we can readily construct the curves showing

the variation of the sum, I , and the difference, I, if the two ray inten-

sities I and I (see Fig. 2). Assuming 12 > I,, we have
1 2

1 + (6)

S = 1 = +( 1) (6)
2 2 2 (

There are difficulties to be expected in reconciling experimental data with

ray theory. If we start from a dependence of the impact parameter b on 8,

such as shown on Fig. Z2 then we notice that the intensity associated with the

inner ray (1) becomes infinite at 0,, and the intensity associated with the

outer ray (2) betomes infinite at 0 = 0 and at 0 . No such singularities

will, of course, be observed. They appear in 'he geometric-optical approxi-

mation because the approximation is not valid aý those values of 0 as a

consaquence of the behavior of the caustic surface in this ca•,e. Should the

ioniAation density be identically zero outside some finite radius then the

singularity at 0 = 0 may disappear. In any cas-!, we can utilize only those

pertions of the curves which are not too close to 0 - 0 or 0 = 0 . The0

problem is then to construct all of the curve on Fig. Zc from the knowledge

of the slope of this curve (or, rather, the slopes of its two )ranches) in

the range a < 8 < - .
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It can be shown that, for small values jf impact parameter, the

ray deflection is proportional to the impact parameter. This means that we

can extend the curve I to 0 = 0 simply by assuming that I, remains

constant for 0 < 0 < a. Thus we obtain b vs. 0 from the origin to 0 = 0 - p.
0

We shall assume that while the scattering data in the range 0 - ( < 8 < 00 0

cannot be used, the value of 0 is known, and that the value impact param-
0

eter at 0 = 0o- P, as well as the slope of the b vs. 0 curve (the slope is,

simply the differential scattering cross-section a), are known, and finally

that the shape of the 0 vs. b curve is parabolic (see Fig. 2d), i.e.,

(8 - 0) o-c(b -b)2
0 0

With these assumptions, the difference between the two values of impact

parameter at 0 = 0o- P, b-2 b is given by

b -bI 4a( 0o- -) (7)

where "(0 -0 ) is the differential scattering cross-section in the direction
0

E = 0 - P. Since bI is known, equation (7) establishes a point on theo

second branch of the b vs. 8 curve. From that point we can continue the

curve by using experimental values of scattering cross-section again.

3. Ray Path and Deflection Angle

The differential equation satisfied by the ray path r(8) in a

cylindrically stratified medium can be readily obtained from Snell's law.

If the dielectric constant is a function of r, then Snell'slaw takes on the

form

/c)/e r sin a = constant (8)

0

where a is the anile between the ray direction and the radial direction
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(see Fig. 3). Since for large r, -- o, r sin a --* b, the constant on the

right-hand side of (8) is simply the impact parameter b of the given ray.

From triangle PP t Q (see Fig. 3) we see that

d) tan 2 a91

Eliminating a between cquations (8) and (9), we obtain the differential equa-

tion of the ray

2 2,2 1 (0(rde/dr) (r c./b r - 1) (I0)
o

In the case of a lossless plasma the dielectric constant is

-N(r)e /m2Elt: (ki'k 12 = - /toe2 m

Let us introduce a, notation which has thLe double purpose of making the rela-

tion (I1),and those which follow, more compact, and at the same time bring

out the similarity of the problem at hand and the corresponding one in particle

mechanics; let us introduce

2. 2

V(r) z Nfr)e i m MW 12)

Combining equations (10), l I) and J12) yields the final form of the differen-

tial equation of the ray with the impact parameter b

IdOl -2[b-z - b-2 -V(r) (13)

The angle between the direction along which the ray comes in from infinity,

and the direction along which it goes out to infinity again is then

zf I I d
drr

0
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The deflection angle of the ray, i. e., the limiting value of the angular co-

ordinate as r -- co, becomes

O(b) 0 - Z r[bZ - r - bZV(r1/ dr (14)
r

0

where r , the distance of closest approa,:h for this ray, is the zero of the,

expression in brack,-ts (-_r = 0 at r ).
dO o

We will now investigate the function 0(b) 'or various ionization

density distributions. We have to distinguish between two types of distribu-

tions: penetrable and impenetrable. The illustrative examples will be of

the former type. We shall consider three ionization distributions:

(1) uniform (2) parabolic and (3) modified parabolic. The mathematical

definitions of these three distribution,, as well as the relations between the

deflection angle and the corresponding impact parameter are listed in

Table 1. The functions 0(b) were obtained simply by evaluating the integral

in Eq. (14) with the appropriate distribution function V(r). The results

listed in Table I are also shown gi'aphically on Figs. 4, 5, and 6. The case

of the uniform cylinder is different in character from the two others because

the medium is discontinuous in this case. The geometric optical field con-

sists of refracted, reftlzted and many multiply reflected and refracted con-

tributions. If we consider only the refracted ray, then the deflection angle

increases monotonically until b = a/1 --- o; for larger values of impact

parameter the incident ray is totally reflected, until, for b > a, the in-

cident ray comp!etely misses the cylinder ancd is not deflected. The remain-

ing two models present no such complications. In the case of a parabolic

distribution the deflection angle is identically zero if the ray misses the

cylinder, i.e., b > a, while in the modified parabolic distribution in which

the extent of plasma is infinite, the deiflection angle tends to zero as b in-

creases.
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TABLE I

V(r) 0/b) . b
0 0

V(r)=V , r<a (b/a)2 < I - V
o 0

=0 ,r>a 0(b)=2(sin-I b,-a sin-I b 2 sin-IV aV-v

4 1l-V 0  an V 0 0F
)t _ V !.

a o

[ a 0(b)=sinl sin V a/ ,

=0 r>a o + (IVO) 0 2

/o a 2

2 VVtr)=V 0 - ( r<a, (b/a)2 < I- •

2 a 2

b 2 I-V0
IV ( l2 r>a 0(b)=-+sin a-2

2 T•+ -v° ab
- V () 2 1..v)z b-L)

Zb I1 b 2 V-
(-) +-

/Ib- V
a 20

V

(b/a) > I -1 -

O~~b)= 2•- 1 '

"(7 2' ba
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It is interesting to observe the dependence of the maximum ray

deflection angle on maximum density V for the two continuous models.0

The maximum deflection angle should be easily observable since outside

this angle there is no geometric optical scattering, only true diffraction.

At sufficiently high frequencies, the differential scattering cross-section

should drop rapidly to very small values at this angle. We see from Fig. 7

that there is very little difference between the two models in their effect on

the maximum deflection angle. Therefore we may conjecture that, so long

as the variation of density near the center of the plasma column in quadratic,

the maximum density can be inferred from the maximum deflection angle

with reasonable accuracy. Since the relation between the two quantities

is particularly simple in the case of the parabolic model, we can make use

of it, thus concluding that

V 2 sin0 (15)0 0

may be a fair approximation fc~r a great variety of smoothly varying distribu-

tions.

4. The Inverse Problem

We shall now proceed to invert equation (14), i.e., to solve it for

V(r) if 0(b) is given. In order to accomplish this, we shall reduce the

equation to one of Abel type, and then use the well-known solution of the Abel

integral equation. The procedure used here is identical with that employed

in a previous solution of the integral equation (14).2 It is convenient to intro-

duce the new variables x, u, v, and w, defined as follows:

2. J. B. Keller, L. Kay and J. Shmoys, "Determination of the Potential from
Scattering Data', Phys. Rev., Vol. 102, No. 2, 557-559, April 15, 1956.
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-Z
x 2 (16a)

u r- (16b)

v (u) = I -V (16c)

w 1 u v (16d)

In terms of the new variables, equation (14) becomes

V - OW -1/2
""-f(x) v (du/dw) dw (17)

2 0 (x -w) i2

If we now recognize that the numerator of the integrand is simply an unknown

function of w, equation (17) is of Abel type. Denoting the numerator of the

integrand in (17) by g(w), we have

d I f , - OlX) d
v1/2(du/dw) g(w) 0w[ f (x) dX1

(18)
w

_ -1/21 d f e(x)dx
2 Zdwo (w-x)1/Z

From (16d) we see that

du I -1/2 /+ I w 1/2 -1/2 dv__l -- W v +- -

dw Z 2 dw

and therefore

1 _-1/2 1 1/2 v-1
g(w) w1/ + Iw v dv/dw (19)

Solving this equation for v in terms of g(w) and noting that v I 1 when

w a 0. we obtain
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w

V (w) e exp f [2 (W ) 1/ g(w') -(wl') j dw (20)
0

Substituting the expression for g(w) from (18) into (20), we obtain

I(d d (21)

Having thuu founZd v(w), we can now calculate r = u -1 v.4/2w'|/Z and

V = I -v. The calculation of V(r) is then a parametric one, with w as a

parameter.

5. Special Cases of 0 vs. b Variation

In principle the procedure of the preceding section can be ap-

plied to numerical data for 9(b). The integral in (21) Would have to be

evaluated numerically for a large number of values of parameter w;

this is clearly a cumbersome procedure. U, instead of evaluating the inte-

gral numerically, we could approximate the numerical data for 0(b) by

one of a family of analytic expressions which would permit explicit evalua-

lion of v(w), the procedure would be greatly simplified. We shall now dis-

cuss one such family of functions 0(b). These functions are linear for

small value of b, reach a maximum 9 = 8 at b x b (this implies a soft,0 0

or penetrable distribution), and then tend to zero as some inverse power of

b. The defining equation for 8 is

n+1

0 0 0b [ _I + _n ,

o Ln + (b/b0 )'

For large b, 0-'b n. We are going to consider the special cases n a 1, 2.

(See Fig. 8.)
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For the case n = I we have

a Zb/bo (23)
T = 2 c3

o 1 + (b/b°0

So that

f= 0 i- (24)

vi- bo

and

v(w) = exp -0 b"2 f (w' + b (/2 1 dw

exp [ o 0 [w (/(wb 0+ )]/25

The parametric equations for the normalized plasma density V in this case

are then

-Z o(l+l/wb 2

V(w) = I - C (26)

2--//
r(w) - w g (I+I/wb0 ) (27)

It is clear from the above equation that small values of w correspond to

large values of r, and conversely. While it i.i impossible to eliminate w

between equations (26) and (27). and thus obtain V as a function of r

directly, it is possible to accomplish this approximately for very small or

very large r. We are primarily interested in the value of V at r a 0.

i.e., Vot and in the manner in which V tends to zero for large r:

w --* co. r -. 0 . V 312- "00 (Z8
o
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-/l2 " 0o wb 20 /

w -0 , r zw V I-b b /r(29)

For the cise n = 2 we have

a b 3 13/2
- )(30)

o o -2 (b/b

so that
3/2 2

fe~x~dx = ~ W- -1 o V 0 W

0 1 0fZb 3 2 131o, w-k o0 1+ 2b oW I+ 2b: w

v(w) exp 1~.' ~~ 1 + 2w'b 2 )
0 0

3/28 2 wJ(2

2 (' + 1,"b w

The parametric equation~s for V(r) in this case are:

V~w) = -" exp ["3 3 ''(Eo/.)(1 + 1i'2b~w)'l1o (33)

v.; 3 (eo,, ) (I + 1/2b ] (34)

The behavior of Vtr) at r =0 and r -oo is, in this case

w -- 3/: V l I - 2 (35)

o0

.s/z 32 z. 33/20 b2
w--O: rw VC + 1w, 2b(3)

0 0
Wr
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The plasma density distribution obtained from these models for two values

of maximum deflection angle is plotted in Fig. 9.

We can use the results obtained in this section to study further

the relation between maximum deflection angle and maximum normalized

plasma density. The results obtained for the two models used in this section

are compared with the :-esults for a parabolic distribution in Fig. 10. The

relation between the mrximum deflection angle and maximum electron density

for either of the two models investigated in this section is not very different

frorn. that obtained for a quadratic density variation. Given the frequency

of the probing wave and the maximum deflection angle, we can again estimate

the maximum electron density in the ionized column by the use of eq. (15).

If more accura,:-y, or more information about the distribution is required,

we must compare the experime-taly observed relation between a scattering

angle and impact parameter with those used in this report, pick out one that

corresponds mrre closely than the others, and look up the corresponding

electron distribution.
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